Viette’s formulas relate the coefficients of a polynomial to various sums and products of its roots.

NOTE: Viette’s formulas refer to all roots, including Complex, NOT just the Real roots.

EX. 1: \(a_n = 1 \): Expand and simplify each into the form: \(F(x) = x^n \pm x^{n-1} \pm x^{n-2} \pm \ldots \pm x \pm \) ________

\(F_2(x) = (x - r_1)(x - r_2) \)
\(F_3(x) = (x - r_1)(x - r_2)(x - r_3) \)
\(F_4(x) = (x - r_1)(x - r_2)(x - r_3)(x - r_4) \)

EXERCISE 1: Using the above patterns, each of these is a one-step question. Be careful of the ± signs.

For each polynomial determine: 1. sum of roots; 2. product of roots; 3. sum of all “product pairs” of roots.

A. \(F(x) = x^4 + 7x^3 + 5x^2 + x + 9 \) __________; __________; __________

B. \(G(x) = x^3 - 9x^2 + 3x - 4 \) __________; __________; __________

C. \(H(x) = x^4 - 2x^2 - x - 10 \) __________; __________; __________

LEMMA Let \(a_n = 1 \), IF \(F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 \), then COMPLETE:

The SUM of the roots of \(F(x) = r_1 + r_2 + r_3 \ldots = \) __________

AND the SUM of the all ‘Product Pairs’ of the roots of \(F(x) = r_1 r_2 + r_1 r_3 + r_2 r_3 + \ldots = \) __________

AND the PRODUCT of the roots of \(F(x) = r_1 r_2 r_3 \ldots = \) __________

THEOREM – Viete’s (16th C) Formulas IF \(F(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0 \), then COMPLETE:

The SUM of the roots of \(F(x) = r_1 + r_2 + r_3 \ldots = \) ______________

AND the SUM of the all ‘Product Pair’s’ of the roots of \(F(x) = r_1 r_2 + r_1 r_3 + r_2 r_3 + \ldots = \) __________

AND the PRODUCT of the roots of \(F(x) = r_1 r_2 r_3 \ldots = \) ______________

EXERCISE 2: Using the above patterns, each of these is a one-step question. Be careful of the ± signs.

For each polynomial determine: 1. sum of roots; 2. product of roots; 3. sum of all “product pairs” of roots.

A. \(F(x) = 2x^4 + 7x^3 + 5x^2 + x + 9 \) ________; ________; ________

B. \(G(x) = -4x^3 + 9x^2 + 3x - 4 \) ________; ________; ________

EXERCISE 3:

A. The four roots of \(F(x) = x^4 + Ax^3 + Bx^2 + Cx + D \) are 1, -4, 5, and 5. Compute \(C = \) ________

B. Two of the roots of \(G(x) = 2x^3 + Ax^2 + Bx + C \) are \(\frac{5 - \sqrt{7}}{2} \) and \(-7/2\). Compute \(A = \) ________
PROBLEMS:

1. If \(a_4 = 1 \), determine \(a_0 \) and \(a_3 \) of the quartic polynomial with the roots: \(2 - i \) and \(5 + \sqrt{3} \).

2. If three roots of \(x^4 + Px^2 + Qx + R = 0 \) are \(-6, 5, 6\), what is the value of \(P + R \)?

3. For nonzero constants \(C \) and \(D \), the equation: \(4x^3 - 12x^2 + Cx + D = 0 \) has two real roots whose sum is \(0 \). Calculate \(C/D \).

4. The arithmetic mean of \(r \) and \(s \) is \(6 \) and the geometric mean of \(r \) and \(s \) is \(10 \). Write a quadratic equation with \(a_2 = 1 \) whose roots are \(r \) and \(s \).

5. If \(r \) and \(s \) are the real roots of \(x^2 + px + 8 = 0 \), then what is the minimum value of \(|r + s| \)?

6. The three roots of \(64x^3 - 144x^2 + 92x - 15 = 0 \) are in arithmetic progression. What is the positive difference between the largest and the smallest of the three roots?

7. If \(m \) and \(n \) are non-zero roots of \(5x^2 + 2mx + n = 0 \), then evaluate \(m + n \).

8. Consider \(x^2 + px + q = 0 \), where \(p \) and \(q \) are positive numbers. The roots of this equation differ by \(1 \). Express \(p \) as a function of \(q \).

9. The sum of the squares of the roots of the equation \(x^2 + 2hx = 3 \) is \(26 \). Calculate \(h^2 \).

10. The function \(f(x) \) satisfies \(f(3 + x) = f(3 - x) \) for all real numbers \(x \). If the equation \(f(x) \) has exactly four distinct real roots, then what is the sum of these four roots?
VIETA'S FORMULAS

If $a_n = 1$, then the SUM of the roots of $F(x) = r_1 + r_2 + r_3 \ldots = -a_{n-1}$

AND the SUM of the ‘Product Pairs’ of the roots of $F(x) = r_1 r_2 + r_1 r_3 + r_2 r_3 + \ldots = a_{n-2}$

..ETC

AND the PRODUCT of the roots of $F(x) = r_1 r_2 r_3 \ldots = (-1)^n a_0$

More generally, for any non-zero value of a_n;

then the SUM of the roots of $F(x) = r_1 + r_2 + r_3 \ldots = -a_{n-1} / a_n$

AND the SUM of the ‘Product Pair’s’ of the roots of $F(x) = r_1 r_2 + r_1 r_3 + r_2 r_3 + \ldots = a_{n-2} / a_0 = a_{n-2} / a_n$

..ETC

AND the PRODUCT of the roots of $F(x) = r_1 r_2 r_3 \ldots = (-1)^n a_0 / a_n$

ANSWERS:

EXERCISES:

1A. $-7; 9; 5$
1B. $9; 4; 3$
1C. $0; -10; -2$

2A. $-7/2; 9/2; 5/2$
2B. $9/4; -1; -3/4$

3A. $C = 115$
3B. $A = -3$

PROBLEMS:

1. $a_3 = -14; \ a_0 = 48$
2. $P + R = 839$
3. $C/D = -1/3$
4. $f(x) = x^2 - 12x + 100$
5. $4\sqrt{2}$
6. 1
7. $-2/25$
8. $\sqrt{4q + 1}$
9. $h^2 = 5$
10. 12